Засвоєння таблиць множення та ділення

Сторінка 8

(6 + 4) • 3 і (6 + 4) + 3; доцільно включати вправи, в яких треба закінчити запис, наприклад:

8 • (10 + 2) = 8 • 10 +… і 8 + (10 + 2) = (8+ 10) +… і т. д.

Засвоєння властивостей множення числа на суму, множення і ділення суми на число безпосередньо підводить учнів до розкриття прийомів позатабличного множення і ділення. До того ж треба врахувати, що під час вивчення додавання і віднімання в межах 100 в учнів уже сформувалося вміння користуватися властивостями арифметичних дій для обґрунтування обчислювальних прийомів додавання і віднімання, тому, вводячи прийоми позатабличного множення і ділення, треба надати учням більше самостійності.

Спочатку вводять прийоми для випадків множення і ділення чисел, які закінчуються нулем. Розв’язування таких прикладів зводиться до множення і ділення одноцифрових чисел, які визначають число десятків. Наприклад:

20 • 3

2 дес. • 3 = 6 дес.

20 • 3 = 60

80: 4

8 дес.: 4 = 2 дес.

80: 4 = 20

При множенні одноцифрових чисел на круглі двоцифрові числа використовують прийом переставляння множників (4 • 20 = 20 • 4).

Круглі двоцифрові числа на круглі двоцифрові ділять способом добору частки на підставі зв’язку між компонентами і результатом множення. Наприклад, щоб 60 поділити на 20, треба знайти таке число, при множенні якого на 20 буде 60. Спочатку пробуємо: 2 – мало, 3 – підходить, бо 20 • 3 = 60. Отже, 60: 20 = 3.

Після вивчення властивості множення числа на суму і суми на число вводять прийоми, які ґрунтуються на цих властивостях. Прийом множення двоцифрового числа на одноцифрове не потребує особливих роз’яснень. Учні можуть самостійно знайти спосіб розв’язування нових прикладів: 12 • 4, 24 • 3 або ж пояснити хід розв’язування нового прикладу за розгорнутим записом його розв’язання:

12 • 3 = (10 + 2) • 3 = 10 • 3 + 2 • 3 = 36.

Учні мають самостійно виділити три основні етапи, з яких складається розв’язання прикладів: замінити перший множник сумою розрядних доданків, прочитати знайдений вираз (10 + 2) • 3 і обчислити добуток зручним способом: помножити на число кожний доданок окремо і знайдені доданки додати.

Важливо своєчасно скоротити пояснення: 12 • 3, десять помножити на три, буде 30; 2 помножити на 3, буде 6; до 30 додати 6, буде 36. У необхідних випадках можна знову звернутися до докладного пояснення.

Під час множення одноцифрового числа на двоцифрове використовують властивість множення числа на суму, наприклад:

6 • 12 = 6 • (10 + 2) = 6 • 10 + 12 = 72.

Можна використати і переставну властивість множення:

6 • 12 = 12 • 6 =72.

Корисно порівняти множення двоцифрового числа на одноцифрове і множення одноцифрового числа на двоцифрове, звернувши увагу учнів на велику схожість цих випадків множення. Доцільно також порівняти прийоми множення і додавання, наприклад:

3 • 14 = 3 • (10 + 4) = 3 • 10 + 3 • 4 = 42

30 + 14 = 30 + (10 + 4) = 30 + 10 + 4 = 44

Під час діл єн н я двоцифрового числа на одноцифрове користуються властивістю ділення суми на число. Цей випадок позатабличного ділення учні засвоюють важче, ніж множення двоцифрового числа на одноцифрове. Справа ускладнюється тим, що при діленні двоцифрового числа на одноцифрове трапляються різні групи прикладів:

1) 46: 2 = (40 + 6): 2 =40: 2 + 6: 2 = 20 + 3 = 23

2) 50: 2 = (40 + 10): 2 = 40: 2 + 10: 2 = 20 + 5 = 25

3) 72: 6 = (60 + 12): 6 = 60: 6 + 12: 6 = 10 + 2 = 12

У першому прикладі (46: 2) доводиться ділене замінювати сумою розрядних доданків (40 + 6), у другому (50: 2) – сумою зручних доданків, якими будуть круглі числа (40 + 10), у третьому (72: 6) – сумою двох чисел, одне з яких кругле число, а друге – двоцифрове (60 + 12). У всіх прикладах задані доданки будуть зручними в тому розумінні, що від ділення їх на заданий дільник дістаємо розрядні доданки частки. Учням буває важко знайти саме зручні доданки.

Щоб підготуватись до розкриття нового прийому, корисно пропонувати такі вправи: виділяти круглі числа до 100, які учні вже вміють ділити на 2 (10, 20, 40, 60, 80), на 3 (30, 60, 90), на 4 (40, 80) і т. д.; записувати різними способами числа у вигляді суми двох доданків, кожний з яких ділиться на задане число без остачі: наприклад, 24 можна замінити такою сумою, кожний доданок якої ділиться на 2: 20 + 4, 12 + 12, 10 + 14 і т. д.; розв’язувати різними способами приклади виду: (18 + 45): 9.

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Це цікаво:

Дослідження роботи логічних елементів
Мета роботи: ознайомитись з принципом роботи та основними характеристиками найпростіших логічних елементів. Обладнання: монтажна плата, радіодеталі (згідно поданих схем), паяльник, монтажні проводи, авометр. Теоретичні відомості Сучасна цифрова інтегральна мікросхема — це мініатюрний електронний бл ...

Уроки номенклатури – індивідуальні уроки
Упевнившись, що дитина засвоїла ідею, педагог репрезентує той самий матеріал, але як вираження нової ідеї. Це реалізується у формі індивідуальних уроків – уроків номенклатури, на яких закріплюють навички роботи та ознайомлюють з новими поняттями. Такий урок має три ступені : 1. Асоціація сенсорного ...

Використання гри та ігрових ситуацій на уроках читання
Сучасна освіта орієнтується на особистість, на розвиток кожної дитини, залежно від її розумових здібностей І фізичного стану. І перед нами постає питання: як зробити урок не тільки продуктивним і результативним, а й цікавим. Таким, що запалить животрепетну іскорку допитливості в очах дитини, збереж ...

Інтерактивні уроки

Інтерактивні уроки

На початку ХХІ століття соціокультурний розвиток людства визначив закріплення складної та суперечливої тенденції, що дістала назву глобалізації.

КАТЕГОРІЇ

Copyright © 2018 - All Rights Reserved - www.novapedahohika.com