Розробка лекцій, практичних робіт, опорних конспектів

Сторінка 23

IV. Мета етапу: перевірка базових вмінь та навичок студентів знаходити загальний інтеграл функції (з курсу математичного аналізу).

Самостійна робота (за варіантами). Перевіряється викладачем, результати оголошуються на наступному занятті.

1. Обчислити невизначені інтеграли:

А)

Б)

2. Знайти площу фігури, яка обмежена графіками функцій.

1. Обчислити невизначені інтеграли:

А)

Б)

2. Знайти площу фігури, яка обмежена графіками функцій.

Домашнє завдання: за підручником [1] розв’язати на ст. 11 (P.L. 1.1.) № 1 (10-15), № 2 (9-12).

Практичне заняття 2

Тема: «Однорідні рівняння та рівняння, що зводяться до них»

Мета:

вироблення вмінь та удосконалення навичок розв’язувати загальні однорідні диференціальні рівняння та рівняння, що зводяться до них;

вироблення вмінь зводити диференціальне рівняння до однорідного рівняння;

розвиток продуктивного мислення;

виховання математичної культури.

При вивченні теми студенти повинні:

знати: означення диференціального однорідного рівняння, методи його розв'язування;

уміти: застосовувати знання для розв'язування однорідного рівняння та рівняння, що зводиться до нього;

здатні: розв'язувати загальні однорідні рівняння.

Обладнання: підручники, дидактичний матеріал (таблиці), картки із самостійною роботою, мультимедійний проектор, комп’ютер.

Час: 2 год.

План заняття

I. Організаційний момент.

II. Актуалізація опорних знань (тестові завдання).

III. Вироблення вмінь та навичок.

IV. Контроль.

Хід заняття

I. Привітання із студентами, повідомлення мети й завдань заняття, перевірка присутніх, оголошення й аналіз результатів самостійної роботи.

II. Мета етапу: визначення рівня засвоєння теоретичного матеріалу студентами та рівня підготовки до практичного заняття.

Студенти разом з викладачем обговорюють наступну задачу.

Задача 1. Серед даних рівнянь вказати однорідні диференціальні рівняння:

а) ; в) ;

б) ; г) .

Розв’язуємо перше рівняння:

а) .

10. Перетворюємо диференціальне рівняння. Розділимо обидві частини рівняння на ; для виразу в дужках застосовуємо властивість, отримаємо:

.

20. Права частина перетвореного диференціального рівняння

Страницы: 18 19 20 21 22 23 24 25 26 27 28

Це цікаво:

Педагогічні умови організації професійного виховання в професійно-технічних навчальних закладах швейного профілю в Україні
В Україні у досліджуваний періоду управління професійно - технічною освітою кадрів для швейної промисловості здійснювалося централізоване. Безпосереднє управління навчально-виховним процесом, контроль за роботою училищ, планування підготовки в них робітників і напрямок закінчивших училище у народне ...

Україна й права людини
Еволюція уявлень про права людини на території кожної країни в минулому відбувалася у руслі уявлень про права людини у цивілізованих державах. Якщо говорити про права людини у недалекому радянському минулому, то цей період був складним і суперечливим. З одного боку, у конституціях Радянської Україн ...

Матеріали експериментального дослідження творчості дітей
В наш час активно розвивається логічно-орієнтовний підхід у навчанні і вихованні дітей в дошкільних навчальних закладах, обговорюються його основні принципи і шляхи реалізації. Одним із важливих принципів такого підходу є врахування індивідуальних особливостей кожної дитини. Для цього педагогам, як ...

Інтерактивні уроки

Інтерактивні уроки

На початку ХХІ століття соціокультурний розвиток людства визначив закріплення складної та суперечливої тенденції, що дістала назву глобалізації.

КАТЕГОРІЇ

Copyright © 2019 - All Rights Reserved - www.novapedahohika.com